Skip to content
ford people-centered automation

Ford Gifts $50K to Design Lab People-Centered Automation

Ford Gifts $50K to Design Lab People-Centered Automation

Ford Gifts $50K to Design Lab People-Centered Automation

Colleen Emmenegger, Head of People-Centered Automation at The Design Lab, was recently the recipient of a $50,000 grant from Ford Motor Company. The grant was awarded for her work regarding how drivers can understand, negotiate, and manage shared autonomy with their vehicles in a way that is accessible and easily translatable.

“We’re trying to figure out if you can build a contract with the driver and her automated vehicle co-pilot so the driver knows exactly what they need to do and what the system does,” says Emmenegger. “We’re trying to build something that explicitly and continuously communicates, and that doesn’t act as an invisible ‘controlling entity’ of the car. A system that provides dynamic, yet constant feedback to the driver and not sudden, startling warnings.” 


Colleen Emmenegger, Design Lab Head of People-Centered Automation

In 1990, Emmenegger graduated from the first batch of Cognitive Science students from UC San Diego. She initially pursued degrees in marine biology and mechanical engineering before discovering cognitive science during a class jointly taught by Ed Hutchins and Don Norman, which introduced her to a world where engineering and human behavior intersected. Now, Norman is her project partner. “I never thought I’d end up working with him, or working at UCSD,” says Emmenegger. “I really came full circle.”  After graduation, she worked as a programmer, received her M.S. in Human Factors from the University of Illinois, Urbana Champaign, and went on to work in the aviation industry before being bought into the Design Lab by Hutchins, who invited her to join one of his projects. 

A key element to Emmenegger’s shared autonomy approach is that the driver is in control of the automotive vehicle in an accessible and simple way. Her research reimagines the automotive process as teamwork between co-pilots: the human driver and the AI. “It looks at the driver and the car as though they are two team members working towards a shared goal,” she says. “Additionally, the communication or negotiation between the co-pilots goes beyond the notion of human machine interaction to the development of a co-pilot relationship.”

The project also works to establish a uniform system between cars so that the driver is not confused by differences between car models. “In the aviation industry, there’s something called ‘mode confusion.’ It’s when pilots make assumptions about what automated systems are engaged at any given time, and incorrect assumptions can lead to serious problems,” Emmenegger explains. “I’ve seen this happen many times in the automotive car industry for regular drivers, who don’t even have the training to deal with such stressful conditions, unlike pilots.”  

According to her research, there is a growing sense of uncertainty and confusion amongst people as their cars become more automated. As different companies continue to produce their own versions of automotive vehicles, it is important that they maintain systems that are consistent and easily translatable. 

Partnering with Ford has greatly enhanced Emmenegger’s research. “There is a lot of richness that comes from working with [Ford],” she says. “They help us understand the industry, its market pressures, strengths, and limitations, which ensures that there isn’t a disconnect between us, the designers, and the people who are actually using the system. Their contribution to the research has been incredibly beneficial for our work.” 

The company’s approach to collaboration has also fostered an engaging research environment. “When you work with an industry partner, they can have different ideas for the project than what you and your team have,” Emmenegger explains. “But with Ford, they are incredibly clear with their communication, which helps my team to identify the right questions.”

Through Ford’s generous grant, Emmenegger will continue her work in making the driving experience more enjoyable and accessible for all.  “I want to make the driving experience more fun,” Emmenger expresses. “I think we should inject a little more enjoyment in our lives and design our systems to include it.”

Colleen Emmenegger, Head of People-Centered Automation at The Design Lab, was recently the recipient of a $50,000 grant from Ford Motor Company. The grant was awarded for her work regarding how drivers can understand, negotiate, and manage shared autonomy with their vehicles in a way that is accessible and easily translatable.

“We’re trying to figure out if you can build a contract with the driver and her automated vehicle co-pilot so the driver knows exactly what they need to do and what the system does,” says Emmenegger. “We’re trying to build something that explicitly and continuously communicates, and that doesn’t act as an invisible ‘controlling entity’ of the car. A system that provides dynamic, yet constant feedback to the driver and not sudden, startling warnings.” 


Colleen Emmenegger, Design Lab Head of People-Centered Automation

In 1990, Emmenegger graduated from the first batch of Cognitive Science students from UC San Diego. She initially pursued degrees in marine biology and mechanical engineering before discovering cognitive science during a class jointly taught by Ed Hutchins and Don Norman, which introduced her to a world where engineering and human behavior intersected. Now, Norman is her project partner. “I never thought I’d end up working with him, or working at UCSD,” says Emmenegger. “I really came full circle.”  After graduation, she worked as a programmer, received her M.S. in Human Factors from the University of Illinois, Urbana Champaign, and went on to work in the aviation industry before being bought into the Design Lab by Hutchins, who invited her to join one of his projects. 

A key element to Emmenegger’s shared autonomy approach is that the driver is in control of the automotive vehicle in an accessible and simple way. Her research reimagines the automotive process as teamwork between co-pilots: the human driver and the AI. “It looks at the driver and the car as though they are two team members working towards a shared goal,” she says. “Additionally, the communication or negotiation between the co-pilots goes beyond the notion of human machine interaction to the development of a co-pilot relationship.”

The project also works to establish a uniform system between cars so that the driver is not confused by differences between car models. “In the aviation industry, there’s something called ‘mode confusion.’ It’s when pilots make assumptions about what automated systems are engaged at any given time, and incorrect assumptions can lead to serious problems,” Emmenegger explains. “I’ve seen this happen many times in the automotive car industry for regular drivers, who don’t even have the training to deal with such stressful conditions, unlike pilots.”  

According to her research, there is a growing sense of uncertainty and confusion amongst people as their cars become more automated. As different companies continue to produce their own versions of automotive vehicles, it is important that they maintain systems that are consistent and easily translatable. 

Partnering with Ford has greatly enhanced Emmenegger’s research. “There is a lot of richness that comes from working with [Ford],” she says. “They help us understand the industry, its market pressures, strengths, and limitations, which ensures that there isn’t a disconnect between us, the designers, and the people who are actually using the system. Their contribution to the research has been incredibly beneficial for our work.” 

The company’s approach to collaboration has also fostered an engaging research environment. “When you work with an industry partner, they can have different ideas for the project than what you and your team have,” Emmenegger explains. “But with Ford, they are incredibly clear with their communication, which helps my team to identify the right questions.”

Through Ford’s generous grant, Emmenegger will continue her work in making the driving experience more enjoyable and accessible for all.  “I want to make the driving experience more fun,” Emmenger expresses. “I think we should inject a little more enjoyment in our lives and design our systems to include it.”

Colleen Emmenegger, Head of People-Centered Automation at The Design Lab, was recently the recipient of a $50,000 grant from Ford Motor Company. The grant was awarded for her work regarding how drivers can understand, negotiate, and manage shared autonomy with their vehicles in a way that is accessible and easily translatable.

“We’re trying to figure out if you can build a contract with the driver and her automated vehicle co-pilot so the driver knows exactly what they need to do and what the system does,” says Emmenegger. “We’re trying to build something that explicitly and continuously communicates, and that doesn’t act as an invisible ‘controlling entity’ of the car. A system that provides dynamic, yet constant feedback to the driver and not sudden, startling warnings.” 


Colleen Emmenegger, Design Lab Head of People-Centered Automation

In 1990, Emmenegger graduated from the first batch of Cognitive Science students from UC San Diego. She initially pursued degrees in marine biology and mechanical engineering before discovering cognitive science during a class jointly taught by Ed Hutchins and Don Norman, which introduced her to a world where engineering and human behavior intersected. Now, Norman is her project partner. “I never thought I’d end up working with him, or working at UCSD,” says Emmenegger. “I really came full circle.”  After graduation, she worked as a programmer, received her M.S. in Human Factors from the University of Illinois, Urbana Champaign, and went on to work in the aviation industry before being bought into the Design Lab by Hutchins, who invited her to join one of his projects. 

A key element to Emmenegger’s shared autonomy approach is that the driver is in control of the automotive vehicle in an accessible and simple way. Her research reimagines the automotive process as teamwork between co-pilots: the human driver and the AI. “It looks at the driver and the car as though they are two team members working towards a shared goal,” she says. “Additionally, the communication or negotiation between the co-pilots goes beyond the notion of human machine interaction to the development of a co-pilot relationship.”

The project also works to establish a uniform system between cars so that the driver is not confused by differences between car models. “In the aviation industry, there’s something called ‘mode confusion.’ It’s when pilots make assumptions about what automated systems are engaged at any given time, and incorrect assumptions can lead to serious problems,” Emmenegger explains. “I’ve seen this happen many times in the automotive car industry for regular drivers, who don’t even have the training to deal with such stressful conditions, unlike pilots.”  

According to her research, there is a growing sense of uncertainty and confusion amongst people as their cars become more automated. As different companies continue to produce their own versions of automotive vehicles, it is important that they maintain systems that are consistent and easily translatable. 

Partnering with Ford has greatly enhanced Emmenegger’s research. “There is a lot of richness that comes from working with [Ford],” she says. “They help us understand the industry, its market pressures, strengths, and limitations, which ensures that there isn’t a disconnect between us, the designers, and the people who are actually using the system. Their contribution to the research has been incredibly beneficial for our work.” 

The company’s approach to collaboration has also fostered an engaging research environment. “When you work with an industry partner, they can have different ideas for the project than what you and your team have,” Emmenegger explains. “But with Ford, they are incredibly clear with their communication, which helps my team to identify the right questions.”

Through Ford’s generous grant, Emmenegger will continue her work in making the driving experience more enjoyable and accessible for all.  “I want to make the driving experience more fun,” Emmenger expresses. “I think we should inject a little more enjoyment in our lives and design our systems to include it.”

Read Next

Ucsd Design Lab Don Norman

Don Norman’s Favorite Book, Famous UC writers on their favorite books

Design for the Real World: Human Ecology and Social Change by Victor Papanek
“The first sentence in this book is ‘There are professions more harmful than industrial design, but only a very few of them.’ I read this book in the 1980s, and it had a huge impact..."
Idea Lab Design Lab

IDEA LAB Spring 2021

In collaboration with UC San Diego The Design Lab and The Basement, the Idea Lab is a quarter-long foundational program designed to introduce students to the ideas of design thinking and how it complements entrepreneurship through hands-on experiences and collaborative work with students from a variety of academic disciplines, backgrounds, and perspectives.  This program is ideal for both students who want to learn about design thinking and for students who need help getting “unstuck” from their current problem space.  Participants who successfully complete the program requirements of the Idea Lab may have the option to continue their journey with a focus on entrepreneurship in The Basement’s Summer Converge Program.

Application opens Monday, Feb. 1st at 12PM noon, closes Sunday, Feb. 21st @ 11:59pm
Trolley Stops Designathon UCSD Design Lab

Designathon Seeks to Reimagine Trolley Stops

On April 6+7, 2019, on UC San Diego campus Warren Mall, over 200+ students, neighbors, designers, technologists, and media-makers will come together for the Pepper Canyon Mobility Hub Designathon, an event developing proposals that will support the transformation Pepper Canyon Trolley Station at UCSD campus, currently under construction, into a dynamic, multimodal mobility hub. The event is produced through a partnership between The UC San Diego Design Lab, SANDAG, UC San Diego Campus Planning, the UC San Diego Young Planners’ Society, Sixth College Culture, Art, Technology program, and UC San Diego Urban Planning Program.
Mobile Health

Focus on mobile health: Scientists develop app to diagnose, treat leishmaniasis

Photo courtesy of Centro Internacional de Entrenamiento e Investigaciones Medicas

Cutaneous leishmaniasis - caused by bites from infected sandflies - produces skin lesions that leave behind both scars and stigma that last a lifetime. Up to 1.2 million new cases are diagnosed each year across the 90 countries where the disease exists, including Colombia.

“Leishmaniasis happens where the medical system isn't," says Dr. Eliah Aronoff-Spencer, a Fogarty mHealth grantee at the University of California, San Diego (UCSD). He's been working in rural Colombia to bridge the access gap between remote communities and the public health system, using a mobile tool that empowers community health workers to identify new cases of the disease and monitor treatment.

First-Ever UC San Diego Design Conference sponsored by Design Lab Unites Students with Leading Design and Business Professionals

By Kaila Lee, Design at UCSD In late May, over 150 students and leading industry…

Back To Top