skip to Main Content
ucsd design lab biometric

Researchers Develop Biometric Tool for Newborn Fingerprinting

Researchers Develop Biometric Tool for Newborn Fingerprinting

Researchers Develop Biometric Tool for Newborn Fingerprinting

Researchers at the University of California San Diego say they have dramatically advanced the science of biometric identification, creating a novel technology that can capture the fingerprints of infants and children, even on the first day of birth.

design lab eli spencer center for health ucsd
Eliah Aronoff-Spencer, MD, PhD, assistant professor of medicine at
UC San Diego School of Medicine and the Design Lab at Qualcomm Institute at UC San Diego.

“We think we’ve solved the problem of infant identification for both developed and developing countries,” said Eliah Aronoff-Spencer, MD, PhD, assistant professor of medicine, UC San Diego School of Medicine and the Qualcomm Institute at UC San Diego. “This new technology allows for quick, accurate fingerprinting that may eliminate the need for paper identification and improve health care and security for millions.”

Globally, infant and childhood identification is needed for health care delivery, especially in remote or resource-limited areas, as well as for supporting efforts in disaster relief, human trafficking, migration and refugee settlement.

Spencer said other technologists have unsuccessfully attempted to extrapolate adult technologies to fingerprinting children. UC San Diego’s solution was to apply a human-centered design and develop the technology from the ground up with infants, caregivers and stakeholders in mind.

“Accurate identification of a child to enable timely vaccinations can improve care, reduce disease burden and save lives,” said Spencer. “This is just the beginning. Consider the usefulness of health identification to track not only vaccinations, but to aid or prevent infectious disease outbreaks. Consider that a person’s identity can now be secured at birth, potentially protecting from identity fraud many years in the future.

“Imagine the ability to assist refugees displaced by war or natural disasters to establish their identity so they can access needed food, aid and care. While a difficult subject, this technology may have applications to help prevent human trafficking and other causes of separation of children from their families.”

Spencer said the technology was conceived to accommodate the size, movements and behaviors of an infant. “Not only did we take into account the child’s physiology and reflexes, but also what would be culturally acceptable in different countries. For example, in some areas, facial photography is shunned, but photography of hands is acceptable.”


Researchers at UC San Diego have advanced the science of biometric identification, creating a novel technology that can capture the fingerprints of infants and children, even on the first day of birth.

The device, called ION, is a non-contact optical scanning technology that can image fingers and the palm of the hand. Prints are stored as encrypted templates that can be securely shared across platforms. The current device is rugged, portable, fits in the user’s hand and works with laptops and mobile platforms. While the technology was developed to identify infants and young children, it works with high accuracy with adults, making it the first biometric platform for all ages. Enhancements under development include the capability to also measure health biometrics and other clinical data, such as temperature, pulse, breathing and oxygen.

Institution Review Board-approved clinical trials are currently underway at UC San Diego and with collaborators in Mexico. Preliminary results show that the device delivers greater than 99 percent accuracy on re-identification after registration as early as two days after birth, with 90 percent accuracy for registration on the first day of birth.

“The next stage is to take the device into the field in Africa and South Asia and broaden the populations we evaluate,” said Spencer. “While the device is not yet commercially available, we hope to have it ready for market within 12 months. We want to continue to validate the platform, work through workflow, security and ethical issues, and, with funding, make the technology available on a staged basis to non-governmental organizations and government programs at local and national levels.”

Initial funding for this project came from the Bill and Melinda Gates Foundation. Multidisciplinary team members at UC San Diego included doctors, engineers, designers, public health experts and behavioral scientists. Project contributors from UC San Diego include UC San Diego Health, Calit2/Qualcomm Institute, UC San Diego School of Global Policy and Strategy and The Design Lab.

By: Jackie Carr
The article originally appeared on the UC San Diego Health website

Researchers at the University of California San Diego say they have dramatically advanced the science of biometric identification, creating a novel technology that can capture the fingerprints of infants and children, even on the first day of birth.

design lab eli spencer center for health ucsd
Eliah Aronoff-Spencer, MD, PhD, assistant professor of medicine at
UC San Diego School of Medicine and the Design Lab at Qualcomm Institute at UC San Diego.

“We think we’ve solved the problem of infant identification for both developed and developing countries,” said Eliah Aronoff-Spencer, MD, PhD, assistant professor of medicine, UC San Diego School of Medicine and the Qualcomm Institute at UC San Diego. “This new technology allows for quick, accurate fingerprinting that may eliminate the need for paper identification and improve health care and security for millions.”

Globally, infant and childhood identification is needed for health care delivery, especially in remote or resource-limited areas, as well as for supporting efforts in disaster relief, human trafficking, migration and refugee settlement.

Spencer said other technologists have unsuccessfully attempted to extrapolate adult technologies to fingerprinting children. UC San Diego’s solution was to apply a human-centered design and develop the technology from the ground up with infants, caregivers and stakeholders in mind.

“Accurate identification of a child to enable timely vaccinations can improve care, reduce disease burden and save lives,” said Spencer. “This is just the beginning. Consider the usefulness of health identification to track not only vaccinations, but to aid or prevent infectious disease outbreaks. Consider that a person’s identity can now be secured at birth, potentially protecting from identity fraud many years in the future.

“Imagine the ability to assist refugees displaced by war or natural disasters to establish their identity so they can access needed food, aid and care. While a difficult subject, this technology may have applications to help prevent human trafficking and other causes of separation of children from their families.”

Spencer said the technology was conceived to accommodate the size, movements and behaviors of an infant. “Not only did we take into account the child’s physiology and reflexes, but also what would be culturally acceptable in different countries. For example, in some areas, facial photography is shunned, but photography of hands is acceptable.”


Researchers at UC San Diego have advanced the science of biometric identification, creating a novel technology that can capture the fingerprints of infants and children, even on the first day of birth.

The device, called ION, is a non-contact optical scanning technology that can image fingers and the palm of the hand. Prints are stored as encrypted templates that can be securely shared across platforms. The current device is rugged, portable, fits in the user’s hand and works with laptops and mobile platforms. While the technology was developed to identify infants and young children, it works with high accuracy with adults, making it the first biometric platform for all ages. Enhancements under development include the capability to also measure health biometrics and other clinical data, such as temperature, pulse, breathing and oxygen.

Institution Review Board-approved clinical trials are currently underway at UC San Diego and with collaborators in Mexico. Preliminary results show that the device delivers greater than 99 percent accuracy on re-identification after registration as early as two days after birth, with 90 percent accuracy for registration on the first day of birth.

“The next stage is to take the device into the field in Africa and South Asia and broaden the populations we evaluate,” said Spencer. “While the device is not yet commercially available, we hope to have it ready for market within 12 months. We want to continue to validate the platform, work through workflow, security and ethical issues, and, with funding, make the technology available on a staged basis to non-governmental organizations and government programs at local and national levels.”

Initial funding for this project came from the Bill and Melinda Gates Foundation. Multidisciplinary team members at UC San Diego included doctors, engineers, designers, public health experts and behavioral scientists. Project contributors from UC San Diego include UC San Diego Health, Calit2/Qualcomm Institute, UC San Diego School of Global Policy and Strategy and The Design Lab.

By: Jackie Carr
The article originally appeared on the UC San Diego Health website

Researchers at the University of California San Diego say they have dramatically advanced the science of biometric identification, creating a novel technology that can capture the fingerprints of infants and children, even on the first day of birth.

design lab eli spencer center for health ucsd
Eliah Aronoff-Spencer, MD, PhD, assistant professor of medicine at
UC San Diego School of Medicine and the Design Lab at Qualcomm Institute at UC San Diego.

“We think we’ve solved the problem of infant identification for both developed and developing countries,” said Eliah Aronoff-Spencer, MD, PhD, assistant professor of medicine, UC San Diego School of Medicine and the Qualcomm Institute at UC San Diego. “This new technology allows for quick, accurate fingerprinting that may eliminate the need for paper identification and improve health care and security for millions.”

Globally, infant and childhood identification is needed for health care delivery, especially in remote or resource-limited areas, as well as for supporting efforts in disaster relief, human trafficking, migration and refugee settlement.

Spencer said other technologists have unsuccessfully attempted to extrapolate adult technologies to fingerprinting children. UC San Diego’s solution was to apply a human-centered design and develop the technology from the ground up with infants, caregivers and stakeholders in mind.

“Accurate identification of a child to enable timely vaccinations can improve care, reduce disease burden and save lives,” said Spencer. “This is just the beginning. Consider the usefulness of health identification to track not only vaccinations, but to aid or prevent infectious disease outbreaks. Consider that a person’s identity can now be secured at birth, potentially protecting from identity fraud many years in the future.

“Imagine the ability to assist refugees displaced by war or natural disasters to establish their identity so they can access needed food, aid and care. While a difficult subject, this technology may have applications to help prevent human trafficking and other causes of separation of children from their families.”

Spencer said the technology was conceived to accommodate the size, movements and behaviors of an infant. “Not only did we take into account the child’s physiology and reflexes, but also what would be culturally acceptable in different countries. For example, in some areas, facial photography is shunned, but photography of hands is acceptable.”


Researchers at UC San Diego have advanced the science of biometric identification, creating a novel technology that can capture the fingerprints of infants and children, even on the first day of birth.

The device, called ION, is a non-contact optical scanning technology that can image fingers and the palm of the hand. Prints are stored as encrypted templates that can be securely shared across platforms. The current device is rugged, portable, fits in the user’s hand and works with laptops and mobile platforms. While the technology was developed to identify infants and young children, it works with high accuracy with adults, making it the first biometric platform for all ages. Enhancements under development include the capability to also measure health biometrics and other clinical data, such as temperature, pulse, breathing and oxygen.

Institution Review Board-approved clinical trials are currently underway at UC San Diego and with collaborators in Mexico. Preliminary results show that the device delivers greater than 99 percent accuracy on re-identification after registration as early as two days after birth, with 90 percent accuracy for registration on the first day of birth.

“The next stage is to take the device into the field in Africa and South Asia and broaden the populations we evaluate,” said Spencer. “While the device is not yet commercially available, we hope to have it ready for market within 12 months. We want to continue to validate the platform, work through workflow, security and ethical issues, and, with funding, make the technology available on a staged basis to non-governmental organizations and government programs at local and national levels.”

Initial funding for this project came from the Bill and Melinda Gates Foundation. Multidisciplinary team members at UC San Diego included doctors, engineers, designers, public health experts and behavioral scientists. Project contributors from UC San Diego include UC San Diego Health, Calit2/Qualcomm Institute, UC San Diego School of Global Policy and Strategy and The Design Lab.

By: Jackie Carr
The article originally appeared on the UC San Diego Health website

Read Next

Surveillance Drones San Diego

Chula Vista PD Approved For Broader Use Of Drones In Law Enforcement

Photo courtesy of Shalina Chatlani

The Chula Vista Police Department has been approved by the Federal Aviation Administration to broaden its use of drones.

Still, some academics say drones can be seen as a form of surveillance. And that having a video doesn’t necessarily mean that officers are making neutral decisions.

"Say you’re getting a call from someone acting erratic … like what would a drone be able to see that would discern a person screaming and waving their hands around as someone who needs intervention by the police, versus a mental health team?" said Lilly Irani, a professor of communication and technology at UC San Diego (and Design Lab faculty).

Even if officers are using video to see whether a situation is dangerous, human bias doesn’t just go away, she said.

"OK, so what type of visual symbols are you going to look for to discern the difference between dangerous and nondangerous?" Irani said.
Design Lab Sheng-feng Qin

Spotlight on Sheng-feng Qin: His take on Design from China to the UK and US

Sheng-feng Qin is a professor at the University of Northumbria at Newcastle in the School…

Design Lab Uc San Diego Don Norman Creative Education

Rethinking Design Education

Don Norman, Design Lab Director

The Challenge

The requirements of the 21st century are quite different than those of earlier years. New needs continually arise, along with new tools, technologies, and materials. Designers are starting to address some of the major societal issues facing the planet. Does design education prepare them to work with and lead the multidisciplinary teams required to work on these complex sociotechnical systems?

The Origins

We are embarking on a serious effort to rethink design education for the 21st century. We started with the multiple thoughtful articles in two special issues of the journal She Ji on design education (download from our website). This inspired us to assemble a team of senior designers from academia and business to serve as a steering committee to start a large effort to rethink design education.
Design Lab Communitycrit Narges Mahyar Steven Dow

CommunityCrit Gives Community Members a Newfound Voice

Actively engaging the public in urban design planning is essential to both establishing a strong…

San Diego/Tijuana is finalist to become a World Design Capital

San Diego Union Tribune

The San Diego/Tijuana region is a finalist to become a World Design Capital that could mean a year-long promotion of the binational region.

Winners are chosen based on how each region effectively incorporates design across their economic, technological, social, cultural, political and environmental sectors . More than just having a fancy title, winning means a year of events to promote the region, including a street festival, a one-day celebration highlighting the winner’s designs and a design conference that should bring people from around the globe.

“This is an incredibly exciting opportunity to not only showcase our bi-national region as a longstanding design and innovation powerhouse,” she wrote, “but to also shape the narrative around what it means to be a 21st century metropolis, [says Michèle Morris, President of the Design Forward Alliance and Associate Director of UCSD Design Lab]."
Building New Bridges: San Diego And Tijuana’s Combined Bid Breaks Down Barriers To Bi-National Cooperation

Building New Bridges: San Diego and Tijuana’s Combined Bid Breaks Down Barriers to Bi-National Cooperation

As dusk hovered over The Rady Shell at Jacobs Park on October 3 at the ‘Welcome Home, Bienvenido a Casa’ event, reflections off the San Diego Bay illuminated an evening of excited anticipation more than five years in the making. Will the San Diego-Tijuana megaregion take home the win in their bid to be the 2024 World Design Capital? Or will it be their competitors, Moscow?

Hosting the event and spearheading the San Diego-Tijuana bid initiative is the interorganizational collaboration of Design Forward Alliance, UC San Diego Design Lab and the Burnham Center for Community Advancement, with the full support of the City of San Diego and City of Tijuana and regional elected officials. This collective was created to amplify San Diego’s capacity as a global leader in human-centered design-driven innovation. The combined communities of art, culture, business, education, civic and design worked together in a multi-year, multi-national collaboration culminating in this night of solidarity for the joint-effort to win the coveted World Design Capital designation—a year-long city promotion program that would begin in 2024 and put the region on the global stage as a world-class innovator of economic, social, cultural and environmental design solutions for a better society.

“It’s not just about gaining the World Design Capital title,” said the Director of The Design Lab, Mai Thi Nguyen. “It’s about how we actually want to contribute and collaborate on multidisciplinary design innovation throughout the region, nationally and globally.”
Back To Top