Skip to content
ucsd design lab biometric

Researchers Develop Biometric Tool for Newborn Fingerprinting

Researchers Develop Biometric Tool for Newborn Fingerprinting

Researchers Develop Biometric Tool for Newborn Fingerprinting

Researchers at the University of California San Diego say they have dramatically advanced the science of biometric identification, creating a novel technology that can capture the fingerprints of infants and children, even on the first day of birth.

design lab eli spencer center for health ucsd
Eliah Aronoff-Spencer, MD, PhD, assistant professor of medicine at
UC San Diego School of Medicine and the Design Lab at Qualcomm Institute at UC San Diego.

“We think we’ve solved the problem of infant identification for both developed and developing countries,” said Eliah Aronoff-Spencer, MD, PhD, assistant professor of medicine, UC San Diego School of Medicine and the Qualcomm Institute at UC San Diego. “This new technology allows for quick, accurate fingerprinting that may eliminate the need for paper identification and improve health care and security for millions.”

Globally, infant and childhood identification is needed for health care delivery, especially in remote or resource-limited areas, as well as for supporting efforts in disaster relief, human trafficking, migration and refugee settlement.

Spencer said other technologists have unsuccessfully attempted to extrapolate adult technologies to fingerprinting children. UC San Diego’s solution was to apply a human-centered design and develop the technology from the ground up with infants, caregivers and stakeholders in mind.

“Accurate identification of a child to enable timely vaccinations can improve care, reduce disease burden and save lives,” said Spencer. “This is just the beginning. Consider the usefulness of health identification to track not only vaccinations, but to aid or prevent infectious disease outbreaks. Consider that a person’s identity can now be secured at birth, potentially protecting from identity fraud many years in the future.

“Imagine the ability to assist refugees displaced by war or natural disasters to establish their identity so they can access needed food, aid and care. While a difficult subject, this technology may have applications to help prevent human trafficking and other causes of separation of children from their families.”

Spencer said the technology was conceived to accommodate the size, movements and behaviors of an infant. “Not only did we take into account the child’s physiology and reflexes, but also what would be culturally acceptable in different countries. For example, in some areas, facial photography is shunned, but photography of hands is acceptable.”


Researchers at UC San Diego have advanced the science of biometric identification, creating a novel technology that can capture the fingerprints of infants and children, even on the first day of birth.

The device, called ION, is a non-contact optical scanning technology that can image fingers and the palm of the hand. Prints are stored as encrypted templates that can be securely shared across platforms. The current device is rugged, portable, fits in the user’s hand and works with laptops and mobile platforms. While the technology was developed to identify infants and young children, it works with high accuracy with adults, making it the first biometric platform for all ages. Enhancements under development include the capability to also measure health biometrics and other clinical data, such as temperature, pulse, breathing and oxygen.

Institution Review Board-approved clinical trials are currently underway at UC San Diego and with collaborators in Mexico. Preliminary results show that the device delivers greater than 99 percent accuracy on re-identification after registration as early as two days after birth, with 90 percent accuracy for registration on the first day of birth.

“The next stage is to take the device into the field in Africa and South Asia and broaden the populations we evaluate,” said Spencer. “While the device is not yet commercially available, we hope to have it ready for market within 12 months. We want to continue to validate the platform, work through workflow, security and ethical issues, and, with funding, make the technology available on a staged basis to non-governmental organizations and government programs at local and national levels.”

Initial funding for this project came from the Bill and Melinda Gates Foundation. Multidisciplinary team members at UC San Diego included doctors, engineers, designers, public health experts and behavioral scientists. Project contributors from UC San Diego include UC San Diego Health, Calit2/Qualcomm Institute, UC San Diego School of Global Policy and Strategy and The Design Lab.

By: Jackie Carr
The article originally appeared on the UC San Diego Health website

Researchers at the University of California San Diego say they have dramatically advanced the science of biometric identification, creating a novel technology that can capture the fingerprints of infants and children, even on the first day of birth.

design lab eli spencer center for health ucsd
Eliah Aronoff-Spencer, MD, PhD, assistant professor of medicine at
UC San Diego School of Medicine and the Design Lab at Qualcomm Institute at UC San Diego.

“We think we’ve solved the problem of infant identification for both developed and developing countries,” said Eliah Aronoff-Spencer, MD, PhD, assistant professor of medicine, UC San Diego School of Medicine and the Qualcomm Institute at UC San Diego. “This new technology allows for quick, accurate fingerprinting that may eliminate the need for paper identification and improve health care and security for millions.”

Globally, infant and childhood identification is needed for health care delivery, especially in remote or resource-limited areas, as well as for supporting efforts in disaster relief, human trafficking, migration and refugee settlement.

Spencer said other technologists have unsuccessfully attempted to extrapolate adult technologies to fingerprinting children. UC San Diego’s solution was to apply a human-centered design and develop the technology from the ground up with infants, caregivers and stakeholders in mind.

“Accurate identification of a child to enable timely vaccinations can improve care, reduce disease burden and save lives,” said Spencer. “This is just the beginning. Consider the usefulness of health identification to track not only vaccinations, but to aid or prevent infectious disease outbreaks. Consider that a person’s identity can now be secured at birth, potentially protecting from identity fraud many years in the future.

“Imagine the ability to assist refugees displaced by war or natural disasters to establish their identity so they can access needed food, aid and care. While a difficult subject, this technology may have applications to help prevent human trafficking and other causes of separation of children from their families.”

Spencer said the technology was conceived to accommodate the size, movements and behaviors of an infant. “Not only did we take into account the child’s physiology and reflexes, but also what would be culturally acceptable in different countries. For example, in some areas, facial photography is shunned, but photography of hands is acceptable.”


Researchers at UC San Diego have advanced the science of biometric identification, creating a novel technology that can capture the fingerprints of infants and children, even on the first day of birth.

The device, called ION, is a non-contact optical scanning technology that can image fingers and the palm of the hand. Prints are stored as encrypted templates that can be securely shared across platforms. The current device is rugged, portable, fits in the user’s hand and works with laptops and mobile platforms. While the technology was developed to identify infants and young children, it works with high accuracy with adults, making it the first biometric platform for all ages. Enhancements under development include the capability to also measure health biometrics and other clinical data, such as temperature, pulse, breathing and oxygen.

Institution Review Board-approved clinical trials are currently underway at UC San Diego and with collaborators in Mexico. Preliminary results show that the device delivers greater than 99 percent accuracy on re-identification after registration as early as two days after birth, with 90 percent accuracy for registration on the first day of birth.

“The next stage is to take the device into the field in Africa and South Asia and broaden the populations we evaluate,” said Spencer. “While the device is not yet commercially available, we hope to have it ready for market within 12 months. We want to continue to validate the platform, work through workflow, security and ethical issues, and, with funding, make the technology available on a staged basis to non-governmental organizations and government programs at local and national levels.”

Initial funding for this project came from the Bill and Melinda Gates Foundation. Multidisciplinary team members at UC San Diego included doctors, engineers, designers, public health experts and behavioral scientists. Project contributors from UC San Diego include UC San Diego Health, Calit2/Qualcomm Institute, UC San Diego School of Global Policy and Strategy and The Design Lab.

By: Jackie Carr
The article originally appeared on the UC San Diego Health website

Researchers at the University of California San Diego say they have dramatically advanced the science of biometric identification, creating a novel technology that can capture the fingerprints of infants and children, even on the first day of birth.

design lab eli spencer center for health ucsd
Eliah Aronoff-Spencer, MD, PhD, assistant professor of medicine at
UC San Diego School of Medicine and the Design Lab at Qualcomm Institute at UC San Diego.

“We think we’ve solved the problem of infant identification for both developed and developing countries,” said Eliah Aronoff-Spencer, MD, PhD, assistant professor of medicine, UC San Diego School of Medicine and the Qualcomm Institute at UC San Diego. “This new technology allows for quick, accurate fingerprinting that may eliminate the need for paper identification and improve health care and security for millions.”

Globally, infant and childhood identification is needed for health care delivery, especially in remote or resource-limited areas, as well as for supporting efforts in disaster relief, human trafficking, migration and refugee settlement.

Spencer said other technologists have unsuccessfully attempted to extrapolate adult technologies to fingerprinting children. UC San Diego’s solution was to apply a human-centered design and develop the technology from the ground up with infants, caregivers and stakeholders in mind.

“Accurate identification of a child to enable timely vaccinations can improve care, reduce disease burden and save lives,” said Spencer. “This is just the beginning. Consider the usefulness of health identification to track not only vaccinations, but to aid or prevent infectious disease outbreaks. Consider that a person’s identity can now be secured at birth, potentially protecting from identity fraud many years in the future.

“Imagine the ability to assist refugees displaced by war or natural disasters to establish their identity so they can access needed food, aid and care. While a difficult subject, this technology may have applications to help prevent human trafficking and other causes of separation of children from their families.”

Spencer said the technology was conceived to accommodate the size, movements and behaviors of an infant. “Not only did we take into account the child’s physiology and reflexes, but also what would be culturally acceptable in different countries. For example, in some areas, facial photography is shunned, but photography of hands is acceptable.”


Researchers at UC San Diego have advanced the science of biometric identification, creating a novel technology that can capture the fingerprints of infants and children, even on the first day of birth.

The device, called ION, is a non-contact optical scanning technology that can image fingers and the palm of the hand. Prints are stored as encrypted templates that can be securely shared across platforms. The current device is rugged, portable, fits in the user’s hand and works with laptops and mobile platforms. While the technology was developed to identify infants and young children, it works with high accuracy with adults, making it the first biometric platform for all ages. Enhancements under development include the capability to also measure health biometrics and other clinical data, such as temperature, pulse, breathing and oxygen.

Institution Review Board-approved clinical trials are currently underway at UC San Diego and with collaborators in Mexico. Preliminary results show that the device delivers greater than 99 percent accuracy on re-identification after registration as early as two days after birth, with 90 percent accuracy for registration on the first day of birth.

“The next stage is to take the device into the field in Africa and South Asia and broaden the populations we evaluate,” said Spencer. “While the device is not yet commercially available, we hope to have it ready for market within 12 months. We want to continue to validate the platform, work through workflow, security and ethical issues, and, with funding, make the technology available on a staged basis to non-governmental organizations and government programs at local and national levels.”

Initial funding for this project came from the Bill and Melinda Gates Foundation. Multidisciplinary team members at UC San Diego included doctors, engineers, designers, public health experts and behavioral scientists. Project contributors from UC San Diego include UC San Diego Health, Calit2/Qualcomm Institute, UC San Diego School of Global Policy and Strategy and The Design Lab.

By: Jackie Carr
The article originally appeared on the UC San Diego Health website

Read Next

UC San Diego Health Launches New Center To Spur Patient-Centered Technologies

UC San Diego Health Launches New Center to Spur Patient-Centered Technologies

On behalf of UCSD Design Lab and the Center for Health Design, we’re excited to support the launch of this collaborative innovation ecosystem designing healthcare with our community. From tele-monitoring patients with diabetes to using artificial intelligence to prevent sepsis, the newly launched Center for Health Innovation at UC San Diego Health will seek to develop, test and commercialize technologies that make a real, measurable difference in the lives and wellbeing of patients.

The new Center for Health Innovation will be located on the La Jolla campus of UC San Diego. Collaborators will include the UC San Diego Design Lab, Qualcomm Institute and Jacobs School of Engineering. It is modeled after the University Health Network’s (UHN) Techna Institute, jointly located within the organization’s hospital sites and at the University of Toronto, and has designed numerous products now used in hospitals and clinics.

“Doctors, nurses and medical teams know best where there are existing technology gaps in patient care,” said Christopher Longhurst, MD, chief information officer, UC San Diego Health. “With our proximity to the health and biotech sector as well as the cross-border region, the number of collaborative opportunities are immense.”

To learn more about the Center for Health Innovation, visit healthinnovation.ucsd.edu
Design Lab Don Norman Healthcare Designforward

San Diego is Getting Serious About Healthcare Design

In June 2017, San Diego hosted two of the largest annual healthcare conventions - the…

UCSD Trolley Station

UCSD to create grand entrance to manage crushing growth, and welcome the public

"To see eyes looking at you matters. One pair of those eyes may give you a job offer, or help finance your startup, or help buy your first product off Kickstarter, or convince you what you’re doing isn’t solving real problems." — Scott Klemmer, Design Lab

In one of the biggest physical and social changes in school history, UC San Diego will create its first “front door,” a grand entrance meant to appeal as much to the public as students and ease crowding on a campus where enrollment could hit 40,000 this fall.
Plans are being drafted for a gateway that will blend art, culture, entertainment, dining, education and research — the same mix that helps funnel people from Westwood Village to UCLA.
Design Lab Michele Morris Greg Horowitt Scale

Smart Cities: Urban Innovation & Design Thinking

UC San Diego Design Lab Associate Director Michèle Morris recently joined venture capitalist, entrepreneur and…

Design Lab Self-driving Nissan Toyota Ford Duke Stanford E-hmi

Design Lab Helps Lead Self-Driving Car Workshop with Experts from Nissan & Toyota

Although Silicon Valley and Detroit automakers have been given the thumbs up from the U.S.…

Productivity

Bringing Order to Chaos: How to Increase Productivity By Mastering Unstructured Time

Podcast with Design Lab member Amy Fox

In this episode we will talk to UCSD Cognitive Scientist, Amy Fox, about Structured and Unstructured time. Join us as we learn about the difference between the two, and tips and tricks that can help you organize and boost your productivity.

Triton Tools & Tidbits is a podcast that is focused on discussing topics that will engage and enrich student life and education. Brought to you by the Office of the Vice Chancellor for Student Affairs.
Back To Top