skip to Main Content

Super Low-cost Smartphone Attachment Brings Blood Pressure Monitoring to Your Fingertips

Super Low-cost Smartphone Attachment Brings Blood Pressure Monitoring to Your Fingertips

Super Low-cost Smartphone Attachment Brings Blood Pressure Monitoring to Your Fingertips

Super Low-cost Smartphone Attachment Brings Blood Pressure Monitoring to Your Fingertips

Two hands hold a black smartphone against a white background.

Engineers at the University of California San Diego have developed a simple, low-cost clip that uses a smartphone’s camera and flash to monitor blood pressure at the user’s fingertip. The clip works with a custom smartphone app and currently costs about 80 cents to make. The researchers estimate that the cost could be as low as 10 cents apiece when manufactured at scale.

The technology was published May 29 in Scientific Reports.

Researchers say it could help make regular blood pressure monitoring easy, affordable and accessible to people in resource-poor communities. It could benefit older adults and pregnant women, for example, in managing conditions such as hypertension.

“We’ve created an inexpensive solution to lower the barrier to blood pressure monitoring,” said study first author Yinan (Tom) Xuan, an electrical and computer engineering Ph.D. student at UC San Diego.

Man in a light gray sweater sits at a desk while holding a smartphone.
Edward Wang

“Because of their low cost, these clips could be handed out to anyone who needs them but cannot go to a clinic regularly,” said study senior author Edward Wang, a professor of electrical and computer engineering at UC San Diego and director of the Digital Health Lab. “A blood pressure monitoring clip could be given to you at your checkup, much like how you get a pack of floss and toothbrush at your dental visit.”

Another key advantage of the clip is that it does not need to be calibrated to a cuff.

“This is what distinguishes our device from other blood pressure monitors,” said Wang. Other cuffless systems being developed for smartwatches and smartphones, he explained, require obtaining a separate set of measurements with a cuff so that their models can be tuned to fit these measurements.

“Our is a calibration-free system, meaning you can just use our device without touching another blood pressure monitor to get a trustworthy blood pressure reading.”

To measure blood pressure, the user simply presses on the clip with a fingertip. A custom smartphone app guides the user on how hard and long to press during the measurement.

Black smartphone with a black plastic clip attached to one corner.

The clip is a 3D-printed plastic attachment that fits over a smartphone’s camera and flash. It features an optical design similar to that of a pinhole camera. When the user presses on the clip, the smartphone’s flash lights up the fingertip. That light is then projected through a pinhole-sized channel to the camera as an image of a red circle. A spring inside the clip allows the user to press with different levels of force. The harder the user presses, the bigger the red circle appears on the camera.

The smartphone app extracts two main pieces of information from the red circle. By looking at the size of the circle, the app can measure the amount of pressure that the user’s fingertip applies. And by looking at the brightness of the circle, the app can measure the volume of blood going in and out of the fingertip. An algorithm converts this information into systolic and diastolic blood pressure readings.

Two hands hold a black smartphone against a white background.
A custom smartphone app guides the user on how hard and long to press during a blood pressure measurement.

The researchers tested the clip on 24 volunteers from the UC San Diego Medical Center. Results were comparable to those taken by a blood pressure cuff.

“Using a standard blood pressure cuff can be awkward to put on correctly, and this solution has the potential to make it easier for older adults to self-monitor blood pressure,” said study co-author and medical collaborator Alison Moore, chief of the Division of Geriatrics in the Department of Medicine at UC San Diego School of Medicine.

While the team has only proven the solution on a single smartphone model, the clip’s current design theoretically should work on other phone models, said Xuan.

Wang and one of his lab members, Colin Barry, a co-author on the paper who is an electrical and computer engineering student at UC San Diego, co-founded a company, Billion Labs Inc., to refine and commercialize the technology.

Next steps include making the technology more user friendly, especially for older adults; testing its accuracy across different skin tones; and creating a more universal design.

Paper: “Ultra-low-cost Mechanical Smartphone Attachment for No-Calibration Blood Pressure Measurement.” Co-authors include Jessica De Souza, Jessica Wen and Nick Antipa, all at UC San Diego.

This work is supported by MassAITC (a program funded by the National Institute on Aging of the National Institutes of Health under award number P30AG073107), the Altman Clinical and Translational Research Institute Galvanizing Engineering in Medicine (GEM) Awards, and a Google Research Scholar Award.

Disclosures: Edward Wang and Colin Barry are co-founders of and have a financial interest in Billion Labs Inc. Wang is also the CEO of Billion Labs Inc. The other authors declare that they have no competing interests. The terms of this arrangement have been reviewed and approved by the University of California San Diego in accordance with its conflict-of-interest policies.

 

As retrieved: https://today.ucsd.edu/story/super-low-cost-smartphone-attachment-brings-blood-pressure-monitoring-to-your-fingertips

Super Low-cost Smartphone Attachment Brings Blood Pressure Monitoring to Your Fingertips

Two hands hold a black smartphone against a white background.

Engineers at the University of California San Diego have developed a simple, low-cost clip that uses a smartphone’s camera and flash to monitor blood pressure at the user’s fingertip. The clip works with a custom smartphone app and currently costs about 80 cents to make. The researchers estimate that the cost could be as low as 10 cents apiece when manufactured at scale.

The technology was published May 29 in Scientific Reports.

Researchers say it could help make regular blood pressure monitoring easy, affordable and accessible to people in resource-poor communities. It could benefit older adults and pregnant women, for example, in managing conditions such as hypertension.

“We’ve created an inexpensive solution to lower the barrier to blood pressure monitoring,” said study first author Yinan (Tom) Xuan, an electrical and computer engineering Ph.D. student at UC San Diego.

Man in a light gray sweater sits at a desk while holding a smartphone.
Edward Wang

“Because of their low cost, these clips could be handed out to anyone who needs them but cannot go to a clinic regularly,” said study senior author Edward Wang, a professor of electrical and computer engineering at UC San Diego and director of the Digital Health Lab. “A blood pressure monitoring clip could be given to you at your checkup, much like how you get a pack of floss and toothbrush at your dental visit.”

Another key advantage of the clip is that it does not need to be calibrated to a cuff.

“This is what distinguishes our device from other blood pressure monitors,” said Wang. Other cuffless systems being developed for smartwatches and smartphones, he explained, require obtaining a separate set of measurements with a cuff so that their models can be tuned to fit these measurements.

“Our is a calibration-free system, meaning you can just use our device without touching another blood pressure monitor to get a trustworthy blood pressure reading.”

To measure blood pressure, the user simply presses on the clip with a fingertip. A custom smartphone app guides the user on how hard and long to press during the measurement.

Black smartphone with a black plastic clip attached to one corner.

The clip is a 3D-printed plastic attachment that fits over a smartphone’s camera and flash. It features an optical design similar to that of a pinhole camera. When the user presses on the clip, the smartphone’s flash lights up the fingertip. That light is then projected through a pinhole-sized channel to the camera as an image of a red circle. A spring inside the clip allows the user to press with different levels of force. The harder the user presses, the bigger the red circle appears on the camera.

The smartphone app extracts two main pieces of information from the red circle. By looking at the size of the circle, the app can measure the amount of pressure that the user’s fingertip applies. And by looking at the brightness of the circle, the app can measure the volume of blood going in and out of the fingertip. An algorithm converts this information into systolic and diastolic blood pressure readings.

Two hands hold a black smartphone against a white background.
A custom smartphone app guides the user on how hard and long to press during a blood pressure measurement.

The researchers tested the clip on 24 volunteers from the UC San Diego Medical Center. Results were comparable to those taken by a blood pressure cuff.

“Using a standard blood pressure cuff can be awkward to put on correctly, and this solution has the potential to make it easier for older adults to self-monitor blood pressure,” said study co-author and medical collaborator Alison Moore, chief of the Division of Geriatrics in the Department of Medicine at UC San Diego School of Medicine.

While the team has only proven the solution on a single smartphone model, the clip’s current design theoretically should work on other phone models, said Xuan.

Wang and one of his lab members, Colin Barry, a co-author on the paper who is an electrical and computer engineering student at UC San Diego, co-founded a company, Billion Labs Inc., to refine and commercialize the technology.

Next steps include making the technology more user friendly, especially for older adults; testing its accuracy across different skin tones; and creating a more universal design.

Paper: “Ultra-low-cost Mechanical Smartphone Attachment for No-Calibration Blood Pressure Measurement.” Co-authors include Jessica De Souza, Jessica Wen and Nick Antipa, all at UC San Diego.

This work is supported by MassAITC (a program funded by the National Institute on Aging of the National Institutes of Health under award number P30AG073107), the Altman Clinical and Translational Research Institute Galvanizing Engineering in Medicine (GEM) Awards, and a Google Research Scholar Award.

Disclosures: Edward Wang and Colin Barry are co-founders of and have a financial interest in Billion Labs Inc. Wang is also the CEO of Billion Labs Inc. The other authors declare that they have no competing interests. The terms of this arrangement have been reviewed and approved by the University of California San Diego in accordance with its conflict-of-interest policies.

 

As retrieved: https://today.ucsd.edu/story/super-low-cost-smartphone-attachment-brings-blood-pressure-monitoring-to-your-fingertips

Super Low-cost Smartphone Attachment Brings Blood Pressure Monitoring to Your Fingertips

Two hands hold a black smartphone against a white background.

Engineers at the University of California San Diego have developed a simple, low-cost clip that uses a smartphone’s camera and flash to monitor blood pressure at the user’s fingertip. The clip works with a custom smartphone app and currently costs about 80 cents to make. The researchers estimate that the cost could be as low as 10 cents apiece when manufactured at scale.

The technology was published May 29 in Scientific Reports.

Researchers say it could help make regular blood pressure monitoring easy, affordable and accessible to people in resource-poor communities. It could benefit older adults and pregnant women, for example, in managing conditions such as hypertension.

“We’ve created an inexpensive solution to lower the barrier to blood pressure monitoring,” said study first author Yinan (Tom) Xuan, an electrical and computer engineering Ph.D. student at UC San Diego.

Man in a light gray sweater sits at a desk while holding a smartphone.
Edward Wang

“Because of their low cost, these clips could be handed out to anyone who needs them but cannot go to a clinic regularly,” said study senior author Edward Wang, a professor of electrical and computer engineering at UC San Diego and director of the Digital Health Lab. “A blood pressure monitoring clip could be given to you at your checkup, much like how you get a pack of floss and toothbrush at your dental visit.”

Another key advantage of the clip is that it does not need to be calibrated to a cuff.

“This is what distinguishes our device from other blood pressure monitors,” said Wang. Other cuffless systems being developed for smartwatches and smartphones, he explained, require obtaining a separate set of measurements with a cuff so that their models can be tuned to fit these measurements.

“Our is a calibration-free system, meaning you can just use our device without touching another blood pressure monitor to get a trustworthy blood pressure reading.”

To measure blood pressure, the user simply presses on the clip with a fingertip. A custom smartphone app guides the user on how hard and long to press during the measurement.

Black smartphone with a black plastic clip attached to one corner.

The clip is a 3D-printed plastic attachment that fits over a smartphone’s camera and flash. It features an optical design similar to that of a pinhole camera. When the user presses on the clip, the smartphone’s flash lights up the fingertip. That light is then projected through a pinhole-sized channel to the camera as an image of a red circle. A spring inside the clip allows the user to press with different levels of force. The harder the user presses, the bigger the red circle appears on the camera.

The smartphone app extracts two main pieces of information from the red circle. By looking at the size of the circle, the app can measure the amount of pressure that the user’s fingertip applies. And by looking at the brightness of the circle, the app can measure the volume of blood going in and out of the fingertip. An algorithm converts this information into systolic and diastolic blood pressure readings.

Two hands hold a black smartphone against a white background.
A custom smartphone app guides the user on how hard and long to press during a blood pressure measurement.

The researchers tested the clip on 24 volunteers from the UC San Diego Medical Center. Results were comparable to those taken by a blood pressure cuff.

“Using a standard blood pressure cuff can be awkward to put on correctly, and this solution has the potential to make it easier for older adults to self-monitor blood pressure,” said study co-author and medical collaborator Alison Moore, chief of the Division of Geriatrics in the Department of Medicine at UC San Diego School of Medicine.

While the team has only proven the solution on a single smartphone model, the clip’s current design theoretically should work on other phone models, said Xuan.

Wang and one of his lab members, Colin Barry, a co-author on the paper who is an electrical and computer engineering student at UC San Diego, co-founded a company, Billion Labs Inc., to refine and commercialize the technology.

Next steps include making the technology more user friendly, especially for older adults; testing its accuracy across different skin tones; and creating a more universal design.

Paper: “Ultra-low-cost Mechanical Smartphone Attachment for No-Calibration Blood Pressure Measurement.” Co-authors include Jessica De Souza, Jessica Wen and Nick Antipa, all at UC San Diego.

This work is supported by MassAITC (a program funded by the National Institute on Aging of the National Institutes of Health under award number P30AG073107), the Altman Clinical and Translational Research Institute Galvanizing Engineering in Medicine (GEM) Awards, and a Google Research Scholar Award.

Disclosures: Edward Wang and Colin Barry are co-founders of and have a financial interest in Billion Labs Inc. Wang is also the CEO of Billion Labs Inc. The other authors declare that they have no competing interests. The terms of this arrangement have been reviewed and approved by the University of California San Diego in accordance with its conflict-of-interest policies.

 

As retrieved: https://today.ucsd.edu/story/super-low-cost-smartphone-attachment-brings-blood-pressure-monitoring-to-your-fingertips

Read Next

Design Lab Uc San Diego Don Norman Creative Education

Rethinking Design Education

Don Norman, Design Lab Director

The Challenge

The requirements of the 21st century are quite different than those of earlier years. New needs continually arise, along with new tools, technologies, and materials. Designers are starting to address some of the major societal issues facing the planet. Does design education prepare them to work with and lead the multidisciplinary teams required to work on these complex sociotechnical systems?

The Origins

We are embarking on a serious effort to rethink design education for the 21st century. We started with the multiple thoughtful articles in two special issues of the journal She Ji on design education (download from our website). This inspired us to assemble a team of senior designers from academia and business to serve as a steering committee to start a large effort to rethink design education.

The Worst F&#%ing Words Ever

Triton Magazine

Benjamin Bergen is a professor of cognitive science at UC San Diego and director of the Language and Cognition Lab, where he studies how our minds compute meaning and how talking interferes with safe driving—among many other things that don’t need to be bleeped. His latest book is What the F: What Swearing Reveals About Our Language, Our Brains, and Ourselves. He calls it “a book-length love letter to profanity.” You’ve been warned.
Design Lab Don Norman Healthcare Designforward

San Diego is Getting Serious About Healthcare Design

In June 2017, San Diego hosted two of the largest annual healthcare conventions - the…

Ucsd Design Lab Biometric

Researchers Develop Biometric Tool for Newborn Fingerprinting

Researchers at the University of California San Diego say they have dramatically advanced the science…

Don-Norman

What is the Future of Design in 50 Seconds?

From Jnd.org & Don Norman: I'm developing a new talk: "21st Century Design: Addressing Major Societal…

UX Design Tips From Experience Designer Emilia Pucci

UX Design Tips from Experience Designer Emilia Pucci | Design Chats

Emilia Pucci, Design Lab Designer-in-Residence, shares some useful tips on User Experience Research and Prototyping.

Design Chats is a video series where we sit down with design practitioners to answer questions about how they utilize human-centered design.

View our Design Chats playlist on the Design Lab YouTube Channel
Back To Top